Non-muscle myosin heavy chain IIA and IIB interact and co-localize in living cells: relevance for MYH9-related disease.
نویسندگان
چکیده
Myosins of class II constitute part of a superfamily of several classes of proteins expressed in almost all eukaryotic cell types. Differences in the heavy chains produce three isoforms of class II non-muscle myosins (A, B and C), which are widely distributed in most tissues and thought to be components of the cell motor systems, although specific functional roles are largely unknown. In particular, it is still a matter of debate whether they interact and have overlapping or distinct functions. This argument is relevant not only to cell physiology, but also to human pathology since mutations of the MYH9 gene encoding non-muscle myosin heavy chain II A (NMMHC-A) cause MYH9-related disease (MYH9-RD), an autosomal dominant disorder characterized by platelet macrocytosis, thrombocytopenia and leukocyte inclusions, variably associated with sensorineural hearing loss, cataracts and/or glomerulonephritis. In this study, we report the results of yeast two-hybrid screening showing that the C-terminals of NMMHC-A and -B interact. This interaction was confirmed by immunoprecipitation in transfected COS-7 cells and in skin fibroblasts naturally expressing both isoforms. Moreover, our immunomorphological study revealed that isoforms A and B co-localize in fibroblasts, erythroblasts and kidney cells. These results suggest that isoforms A and B are strictly related molecules and support the hypothesis that their interrelationship could be involved both in the variability of clinical phenotype and selectivity of tissue damage of MYH9-RD.
منابع مشابه
Transfection of the mutant MYH9 cDNA reproduces the most typical cellular phenotype of MYH9-related disease in different cell lines
BACKGROUND Heterozygous mutations of MYH9, encoding the Non-Muscular Myosin Heavy Chain-IIA (NMMHC-IIA), cause a complex disorder named MYH9-related disease, characterized by a combination of different phenotypic features. At birth, patients present platelet macrocytosis, thrombocytopenia and leukocyte inclusions containing NMMHC-IIA. Moreover, later in life some of them develop the additional ...
متن کاملActin and myosin contribute to mammalian mitochondrial DNA maintenance
Mitochondrial DNA maintenance and segregation are dependent on the actin cytoskeleton in budding yeast. We found two cytoskeletal proteins among six proteins tightly associated with rat liver mitochondrial DNA: non-muscle myosin heavy chain IIA and β-actin. In human cells, transient gene silencing of MYH9 (encoding non-muscle myosin heavy chain IIA), or the closely related MYH10 gene (encoding ...
متن کاملT Lymphocyte Myosin IIA is Required for Maturation of the Immunological Synapse
The role of non-muscle myosin IIA (heavy chain encoded by the non-muscle myosin heavy chain 9 gene, Myh9) in immunological synapse formation is controversial. We have addressed the role of myosin IIA heavy chain protein (MYH9) in mouse T cells responding to MHC-peptide complexes and ICAM-1 in supported planar bilayers - a model for immunological synapse maturation. We found that reduction of MY...
متن کاملProteomics Analysis of the Non-Muscle Myosin Heavy Chain IIa-Enriched Actin-Myosin Complex Reveals Multiple Functions within the Podocyte
MYH9 encodes non-muscle myosin heavy chain IIA (NMMHCIIA), the predominant force-generating ATPase in non-muscle cells. Several lines of evidence implicate a role for MYH9 in podocytopathies. However, NMMHCIIA's function in podocytes remains unknown. To better understand this function, we performed immuno-precipitation followed by mass-spectrometry proteomics to identify proteins interacting wi...
متن کاملMyosin regulatory light chains are required to maintain the stability of myosin II and cellular integrity.
Myosin II is an actin-binding protein composed of MHC (myosin heavy chain) IIs, RLCs (regulatory light chains) and ELCs (essential light chains). Myosin II expressed in non-muscle tissues plays a central role in cell adhesion, migration and division. The regulation of myosin II activity is known to involve the phosphorylation of RLCs, which increases the Mg2+-ATPase activity of MHC IIs. However...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of molecular medicine
دوره 17 5 شماره
صفحات -
تاریخ انتشار 2006